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Abstract The paper is focused on a tiSsue-Based Standardi-
zation Technique (SBST) of magnetic resonance (MR) brain
images. Magnetic Resonance Imaging intensities have no
fixed tissue-specific numeric meaning, even within the same
MRI protocol, for the same body region, or even for images of
the same patient obtained on the same scanner in different
moments. This affects postprocessing tasks such as automatic
segmentation or unsupervised/supervised classification
methods, which strictly depend on the observed image inten-
sities, compromising the accuracy and efficiency of many im-
age analyses algorithms. A large number of MR images from
public databases, belonging to healthy people and to patients
with different degrees of neurodegenerative pathology, were
employed together with synthetic MRIs. Combining both his-
togram and tissue-specific intensity information, a correspon-
dence is obtained for each tissue across images. The novelty
consists of computing three standardizing transformations for
the three main brain tissues, for each tissue class separately. In
order to create a continuous intensity mapping, spline smooth-
ing of the overall slightly discontinuous piecewise-linear in-
tensity transformation is performed. The robustness of the
technique is assessed in a post hoc manner, by verifying that
automatic segmentation of images before and after standardi-
zation gives a high overlapping (Dice index >0.9) for each
tissue class, even across images coming from different
sources. Furthermore, SBST efficacy is tested by evaluating
if and how much it increases intertissue discrimination and by
assessing gaussianity of tissue gray-level distributions before

and after standardization. Some quantitative comparisons to
already existing different approaches available in the literature
are performed.

Keywords General intensity scale . Magnetic Resonance
Imaging . Nonlinear registration . Intensity standardization .

Alzheimer’s Disease Neuroimaging Initiative

Introduction

Magnetic resonance images from different sites and scanners
are used extensively in medical and clinical research. They
bring interesting challenges for image analysis algorithms
[1], as well as for diagnosis and development of strategies of
various disease treatments [2].

However, many problems can affect the results especially
in a large multisite clinical study [3], where differences in
subject positioning between sites or a baseline and a later scan,
or protocol [4, 5] can be found, making the interpretation
difficult [3].

As highlighted by Jäger and Hornegger [6], the lack of a
standard intensity scale has no direct impact on medical diag-
nosis by experts but, when sophisticated automatic segmenta-
tion and quantification methods are needed, standardization of
the observed image intensities is of crucial importance.

Moreover, most of the supervised parametric lesion identi-
fication and tissue type segmentation approaches (both auto-
matic and semiautomatic) applied to brain Magnetic Reso-
nance Imaging (MRI) volumes rely, explicitly or implicitly,
on strong assumptions regarding the shape of the underlying
distribution of various tissue type intensities. These assump-
tions require images to have standardized intensity ranges in
order not to compromise the accuracy and efficiency of many
image analysis applications in the medical field [6–8].
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Furthermore, currently, a new class of hybrid imaging sys-
tems combining MR and positron emission tomography
(PET) is being developed, and, in order to increase the PET
image quality, a standardized attenuation correction utilizing
the MR data has to be performed. For this purpose, the MR
intensities have to be mapped to attenuation coefficients
which correlate to tissue classes [8].

In the literature, many attempts to achieve intensity stan-
dardization by image histogram adjustment were published.
Interesting and extensive reviews were given by Madabhushi
et al. [2], Jäger and Hornegger [6], and Shah et al. [8]. Other
approaches are reported by Christensen [9], who uses even-
ordered derivatives of the image histogram to determine a
single global scaling factor between two images, or by
Weisenfeld and Warfield [10], who propose the use of
Kullback-Leibler divergence to match the intensity distribu-
tion of two images. Leung et al. [1] proposed a semiautomated
segmentation technique that delineates CSF/WM/GM tissue
components, for which they computedmean intensities. How-
ever, this technique yields a linear transformation, which does
not completely address the problem, guaranteeing the stan-
dardization of spatially corresponding tissue intensities [11].

In the study of Jäger and Hornegger [6], the properties of all
acquired images (e.g., T1- and T2-weighted images) are
stored in multidimensional joint histograms. In order to nor-
malize the probability density function of a newly acquired
dataset, a nonrigid image registration is performed between
the joint histogram of a reference and the joint histograms of
the acquired images, avoiding any prior registration or seg-
mentation of the datasets [6].

This paper belongs to the field of intensity standardization
by image histogram adjustment. The aim is to give insight on
MRI standardization described by Cataldo et al. [12], as a part
of a research, in which brain template generation for
Alzheimer’s disease, using clusterization methods is described.

Against that background, many aspects regarding image
standardization are deeper explained and results are compared
with other approaches available in the literature.

Standardization techniques that employ histograms are in-
deed largely used in the literature [11, 13–16], we attempted to
improve them, enhancing robustness, by considering tissue-
specific information. The main novelty consists of computing
three piecewise-linear standardizing transformations for the
three main brain tissues, for each tissue class separately. In
order to create a continuous intensity mapping, the three trans-
formations are combined and spline smoothing of the overall
slightly discontinuous intensity transformation is performed.

In this way, we are able to obtain similar gray values for
comparable tissue classes. Our standardization procedure is
hereafter called tiSsue-Based Standardization Technique
(SBST).

The technique robustness was before all assessed through
two indicators: the Dice index, as a measure of the overlap

between tissue masks segmented before and after standardiza-
tion, and the mean absolute error (MAE).

MAE was calculated on different voxel sets of the single
brain tissues and the corresponding template images, in case
of SBST and with other standardization procedures available
in the literature [11, 14].

Dice index gave a very high (over 0.9) score, even for
images belonging to diseased subjects.

Then, we used the calculation of Jeffreys divergence to
show how our standardization technique increases intertissue
discrimination as compared to nonstandardized (NS) images,
and to images standardized with the method described in [15],
hereafter called L4.

Finally, SBSTefficacy was tested by assessing gaussianity of
tissue gray-level distributions before and after standardization.

According to our tests, SBST intensity standardization con-
tributes to a better scale mapping of the various tissue types, in
comparison with the NS and the L4 standardized images.

We processed images belonging to nondemented and de-
mented older adults, characterized by clinical conditions rang-
ing from good health state (normal) to probable dementia of
AD type as well as with mild cognitive impairment (MCI),
available from large, public datasets of MR brain images.

We also evaluated the technique on synthetic images with
different amounts of noise.

Though SBST appears as a good standardizing method,
some limits of the procedure are present. They are exposed
in the BDiscussion^ section.

Materials and Methods

Materials

A consistent number (over 500) of MR brain images were
employed to develop the procedure detailed in the next
paragraphs.

They can be divided into the following:

– MRIs of human brain, available from public databases,
such as the Alzheimer’s Disease Neuroimaging Initiative
(ADNI, Web site http://www.loni.ucla.edu/ADNI/) and
the Open Access Series of Imaging Studies (OASIS,
Web site http://www.oasis-brains.org/)

– Synthetic MRIs, available from the Brainweb,
McConnell Brain Imaging Centre (BIC) of the Montreal
Neurological Institute, McGill University (Web site
http://www.bic.mni.mcgill.ca/brainweb/

The ADNI initiative was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies,
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and nonprofit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
MCI and early Alzheimer’s disease (AD). Determination of
sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen the
time and cost of clinical trials.

The principal investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of Califor-
nia–San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from
over 50 sites across the USA and Canada. The initial goal of
ADNI was to recruit 800 subjects, but ADNI has been follow-
ed by ADNI-GO and ADNI-2. To date, these three protocols
have recruited over 1500 adults, ages 55 to 90, to participate in
the research, consisting of cognitively normal older individ-
uals, people with early or late MCI, and people with early AD.
The follow-up duration of each group is specified in the pro-
tocols for ADNI-1, ADNI-2, and ADNI-GO. Subjects origi-
nally recruited for ADNI-1 and ADNI-GO had the option to
be followed in ADNI-2 (for up-to-date information, see www.
adni-info.org).

In this study, we used T1-weighted MP-RAGE protocol
ADNI images belonged to men and women, aged 62 to 98
with a resolution of 256×256×166 and a slice thickness of
1 mm. Each image has undergone specific image preprocess-
ing correction steps, including gradwarp, B1 and N3 correc-
tion (http://www.loni.ucla.edu/ADNI/).

The Open Access Series of Imaging Studies (OASIS)
is a project aimed at making MRI datasets of the brain
freely available to the scientific community. The aim is
to facilitate future discoveries in basic and clinical neu-
roscience [17]. OASIS is made available by the Wash-
ington University Alzheimer’s Disease Research Center,
Harvard University, the Neuroinformatics Research
Group (NRG) at Washington University School of Med-
icine, and the Biomedical Informatics Research Network
(BIRN) [17].

Longitudinal T1-weighted MRI data in nondemented
and demented older adults were used. This set consists
of a longitudinal collection of 150 subjects aged 60 to
96 with a resolution of 181×217×181 and a slice thick-
ness of 1 mm. Each subject was scanned on two or more
visits, separated by at least 1 year for a total of 373 im-
aging sessions (http://www.oasis-brains.org/). The
subjects include both men and women, characterized by
clinical conditions ranging from good health state
(normal) to probable dementia of AD type as well as with
MCI. The mini-mental state examination (MMSE) test

was used to estimate the severity of the cognitive
impairment.

From the OASIS database, we selected a subset comprising
30 subjects, with anonymized T1-weighted MP-RAGE proto-
col data. Subjects were scanned two different times, giving a
total of 60 images.

Ten synthetic MRIs from the Brainweb (Web site http://
www.bic.mni.mcgill.ca/brainweb/) were added to the
employed dataset, allowing us to evaluate the performance
of standardization techniques, including intersubject
intensity variations and better focusing on interscanner
differences.

Throughout this study, registration and segmentation tasks
were performed with respect to two templates, i.e., the
MNI152 and the COLIN27.

The MNI152 is the average of 152 normal MRI scans
that have been matched to the MNI305 using a nine-
parameter affine transform, and the COLIN27 is a high
resolution (1-mm3 isotropic), high signal-to-noise aver-
age of 27 T1-weighted images of a single human brain.
CSF, GM, and WM masks were available for both the
templates.

Automatic registration and segmentation of the images,
before and after standardization, was performed by using
two popular software tools: FMRIB an open-source tool
of the Oxford University Software Library (FSL, available
at http://fsl.fmrib.ox.ac.uk/fsl) and the Statistical
Parametric Mapping (SPM, Wellcome Dept. of Imaging
Neuroscience, London, available at www.fil.ion.ucl.ac.
uk/spm).

In this regard, we considered the results of Klein et al. [18]
that evaluated 14 registration and segmentation methods, con-
cluding that FSL and SPM-DARTEL Toolbox gave the most
consistently high accuracy across subjects.

In particular, using the FSL package, FNIRT module reg-
isters the brain volume to the standard space (MNI152 or
COLIN27), using a priori tissue probability maps. Then, seg-
mentation is performed by the FMRIB’s Automated Segmen-
tation Tool (FAST). The latter segments the brain volume into
the three main tissue classes (GM, WM, CSF) while also
correcting for spatial intensity variations.

FAST requires as input a skull-stripped version of the im-
age (running BET tool from the FSL package) and is based on
a hidden Markov random field model with an associated
expectation-maximization algorithm. The whole process is
fully automated, producing a probabilistic and/or partial vol-
ume tissue segmentation.

The SPM-DARTEL Toolbox allows both registration and
segmentation. It is based on a paper by Ashburner [19],
starting from the idea of nonlinearly registering images by
computing a Bflow field^ which can then be Bexponentiated^
to generate both forward and backward deformations. This
procedure is repeated a number of times, writing out rigidly
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transformed versions of the tissue class images, such that they
are in as close alignment as possible with the tissue probability
maps.

Both tools are quite fast. Currently, they take less than
10 min to segment a 256×256×166 volume on the most
common personal computer (Intel G640@2.80GHz).

The whole SBST procedure is currently developed un-
der MATLAB, a high-level technical-computing language
(http://www.mathworks.com/products/matlab).

Intensity Standardization

The presented SBST standardization technique starts from the
gray-level standardization method addressed by Nyúl and
Udupa, Nyúl et al., and Ge et al. works [13, 16], with some
important differences discussed hereafter.

The original method is well known [13–16], and we briefly
recall that it is a two-step approach. The first step (Btraining
step^) involves finding the parameters of the standardizing
transform from a set of images, by defining a set of landmarks
in the image histograms. Thus, a continuous, piecewise-linear
intensity mapping to a standard scale is achieved. The second
step (Btransformation step^) applies the learnt transformation
to the intensity of each training set image and of any new
image into the standardized grayscale: each image is standard-
ized by projecting its landmarks onto the standard ones, while
the gray levels between the landmarks are linearly
interpolated.

In the original paper by Nyúl and Udupa [18], the land-
marks were mode-based, i.e., the local maxima of the histo-
gram were used. In their subsequent work, they chose a set of
population percentiles instead, in order to make the method
more robust and avoid incorrect standard scales. In fact, as
pointed out by the authors, it might happen that a particular
mode corresponded, in two images A and B, to different mat-
ters (e.g., WM in image A, GM in image B). In this case, the
mode should not be used as a landmark, because it would lead
to tissue mixing, as different tissues would be projected to the
same Bstandard^ levels. The consequence of training with
such landmarks would be to obtain a meaningless standard
scale.

In the decile formulation of the standardization method,
deciles are chosen as the histogram landmarks, giving the
intensity-landmark configuration CL as follows:

CL ¼ plow; m10;m20;m30;m40;m50;m60;m70;m80;m90; phigh
h i

where plow=1 and phigh=99, each mi, i={10, 20, …, 90} de-
notes the ith percentile of the histogram associated with the
foreground part of the image with mode m.

A graphical illustration, directly derived from the literature
[13–16], is provided in Fig. 1a.

Our technique consists of these main steps:

– Choice of a training set of images, from the original (here-
after called NS) MRI scans

– Segmentation of GM, WM, and CSF tissue images for
each member of the training set.

– Calculation of the gray-level histogram for each tissue
and for each training image.

– Computing of three standardizing transformations for the
three main brain tissues, for the training set images, sim-
ilarly to [13–16], but for each tissue class separately. In
order to create a continuous intensity mapping, as the
three transformations do not exactly overlap in the two
gray-value ranges shared by different brain tissues, spline
smoothing of the overall slightly discontinuous
piecewise-linear intensity transformation is performed.

– Application of the standardizing transformation to each
member of the training set and to other NS images, giving
as output the SBST-standardized images.

The first issue regards how to construct the training set of
images. In fact, the images are significantly different anatom-
ically, and there is a big variance in the localization of the three
main tissues. The major part of them belong to large, public
datasets and encompass subjects characterized by clinical con-
ditions ranging from good health state (normal) to probable
dementia of AD type as well as with MCI. Before signal
intensity standardization, the proper set of training histograms
has to be chosen, checking that they are as representative of
population variability as possible [12, 16]. In this regard, we
took into account the considerations addressed by Cataldo

Fig. 1 A graphical illustration of
the L4 method, directly derived
from the literature (a). Histogram
landmarks for the three tissues
(CSF, GM, WM) in the tissue-
based (SBST) and L4 standardi-
zation (b). A spline fitting of the
SBST curve is shown (600×
194 mm (300×300 DPI))
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et al. [12], highlighting that the number of images able to
describe the population is lower for patients with homoge-
neous clinical conditions than with mixed degrees of
neuropathology.

In the second step, the segmentation task is performed au-
tomatically, by the proper module available in SPM-DARTEL
[19].

The gray-level standardization step represents the first
and most important difference with respect to Nyúl and
Udupa, Nyúl et al., and Ge et al. works [13–16], their
standardization method being hereafter called L4, as in
[15].

In L4, gray-level standardization is obtained by selecting
for each image of a training set some histogram landmarks,
averaging them to obtain a list of reference mean landmarks to
be used as a standard scale. Each training set image is then
standardized, by projecting its landmarks onto the standard
ones, while the gray levels between the landmarks are linearly
interpolated. Thus, a continuous, piecewise-linear intensity
mapping to a standard scale is achieved. Unfortunately, as
observed by Cataldo et al. [12], by this procedure, tissue
Bmixing^ could happen.

In order to reduce this possibility, we propose a variant in
which three independent standardizing transformations are
calculated, after segmenting the training images into WM,
GM, and CSF tissues.

Gray-level standardization is performed after taking into
account that, because of signal intensity outliers, it is not ad-
visable to use the full intensity range, but only the range up to
the 99.8 % intensity percentile. Moreover, deciles are chosen
as the histogram landmarks, so as to have a smooth map func-
tion (Fig. 1b).

In this way, we consider and solve the problems highlighted
in [6], i.e., tissue classes with a small number of voxels could
not be correctly transformed. Consequently, it is no longer pos-
sible to find a plausible global transformation of the intensity
[6]. One straightforward solution to this is to split the datasets
into smaller subvolumes, represented in our case by the differ-
ent tissues, and intensity-standardize separately [6].

Due to the independent standardization of the tissues, in-
tensity discontinuities can occur at the two common gray-
value ranges.

Smoothing of the piecewise-linear intensity transforma-
tions, achieved by a spline function, gives a fitting that closely
fol lows the transformat ion shape, just avoiding
discontinuities.

A large set of landmarks composed by deciles chosen in the
histograms of each of the three tissues, as said above, permits
to achieve a Bstandard scale^ used to standardize each image
in the training dataset and other images.

Figure 1b gives an example of a SBST standardizing trans-
formation, in comparison with the transformation calculated
with the L4 procedure.

Results

This paragraph consists of four subsections which explain the
assessment of the results and the metric applied for quantita-
tive evaluation of the performance of the proposed technique.

Comparison with the L4 Procedure

Some histograms before and after standardization, with both
the L4 and SBST procedures, with respect to the COLIN27
template, are shown in Fig. 2.

This figure shows (Fig. 2a) that the chosen image was
apparently standardized with success by L4. However, once
the fat, bone, and background are removed and the images are
segmented in the three fundamental tissues, a different situa-
tion is represented (Fig. 2b–d).

In particular, Fig. 2b compares the template and the image
histograms before any standardization: they look quite differ-
ent in shape and actually need intensity standardization. In
Fig. 2c, the three matters are shown after L4 standardization
(this is the clean equivalent of Fig. 2a): no correspondence
exists, even if in Fig. 2a standardization looked satisfying.
Finally, Fig. 2d shows that SBST correctly and cleanly stan-
dardized each tissue.

This confirms, at the histogram level, the robustness of the
SBST approach, in which three standardizing transformations
are separately calculated on the GM, WM, and CSF images,
and then fused, giving histograms with similar shape for the
same tissues.

Thus, as already shown in [12], the possibility of tissue
Bmixing^ is reduced.

Comparison Between NS and SBST-Standardized Images

We now demonstrate the robustness of the SBST technique,
by comparing WM/GM/CSF segmentations of SBST-
standardized images with the corresponding segmentations
of the NS segmented images, taken as a gold standard. This
is a fundamental issue, as solely pure histogram comparisons
of SBSTwith previously published methods, already present-
ed in this section, could be by no means informative for the
robustness of the technique in terms of brain tissue type seg-
mentation. So, spatially specific comparison of transformed
images with a gold standard is needed.

It could be happen, in fact, that anatomical match of
resulting images with a gold standard anatomy could be low
because negatively affected by the smoothed piecewise-linear
intensity transformations employed in standardization.

The Dice overlap metric was used to measure the similarity
of the segmented results across the two image types, i.e., be-
tween the NS segmented images, considered as a gold stan-
dard, and the SBST segmented ones. This cross-validation is
largely used in the literature, providing a simple yet effective
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way to compare the consistency of the segmentation especial-
ly between images segmented with different algorithms.

Furthermore, considering that the used MRI scans
contained pathological images belonging to MCI and AD
subjects too, the Dice overlap is evaluated for each different
pathology, in order to assess if the SBST technique respects or
negatively affects lesion morphology.

Dice index between tissue masks was measured for the
whole dataset, after automatic segmentation of the tissues,
before and after SBST standardization, with the proper tools
available in FSL and in SPM-DARTEL packages.

A typical box plot of the Dice index is drawn in Fig. 3,
evaluated for 250 ADNI MRIs, segmented with the FAST.
The index is very high (over 0.9) for each tissue class, and
more important, it gives high values even for pathological
images belonging to MCI and AD subjects.

The result is independent on the employed segmenta-
tion tool, and small differences in the Dice index may
depend on the peculiarities of the segmentation algorithm
[20, 21].

Dice index was then measured between the NS segmented
images and the L4-standardized segmented ones, obtaining
best values around 0.6.

However, for every degree of neurodegenerative patholo-
gy, we observed that the CSF tissue class exhibits a greater

spread, probably since CSF accounts for a small portion of
voxels in total brain matter; thus, even slight variations in the
CSF can yield large overlap errors [21].

In Fig. 4, a sample image without standardization and with
the SBST and the L4 intensity standardization, and their his-
tograms, are given.

Comparison by Using the MAE

Here, the SBST results are compared with those obtained by
its parent standardization technique, i.e., L4, and another
tissue-based standardization technique called STandardization

Fig. 2 An example of image standardization. Histograms of the template
and the whole L4-standardized image (a). Histograms of the template and
the three tissues (CSF, GM, WM): nonstandardized (NS) (b), L4-

standardized (c), and SBST-standardized (d) histograms, according to
the transformation in Fig. 1b (189 x 123 mm (300 x 300 DPI))

Fig. 3 Box plot of the Dice index for 250 ADNI MRIs with different
degree of neurodegenerative pathology, segmented with the FMRIB’s
Automated Segmentation Tool (FAST) (414 x 190mm (300 x 300 DPI))
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of Intensities (STI) [11]. The measure employed is the voxel-
wise MAE [11], computed on different voxel sets.

The MAE for each image is defined by

MAE ¼ 1

N

XN

v¼1

Io;v−I s;v
�� �� ð1Þ

where N is the number of voxels in the considered regions
(e.g., CSF, WM…), and Io,v and Is,v are intensity values for
the template and the nonlinearly registered images (NS, SBST,
or L4-standardized), respectively, at voxel v. MAE can be
expressed in percentage [11].

The STI technique uses spatial correspondence between an
input image and a standard one, determined via global linear
and nonlinear registration. Registration allows thus the use of
joint histograms to determine intensity correspondence in
each tissue, defined within voxel masks [11].

As regards the standardizing transformation in STI, first the
mode, i.e., maximum, in the joint histogram [11] is found, and
then, a histogram landmark pair corresponding to the input-to-
standard intensity mapping for each tissues is determined. So,
in order to create the standardized image, the authors added an
experimentally determined heuristic to their algorithm. This
resulted in estimating the background (BKG) first, then the
WM and the GM, removing overlap between BKG/GM and
GM/WM, by using the standard imagemasks for these tissues.
They considered CSF is mostly similar to BKG, and they

found that it was more robust to indirectly correct the former
through BKG standardization [11].

In Fig. 5, we give MAE values for a subset of 250 MR
images (a mixture of ADNI and OASIS images randomly
selected), for the CSF, WM, and GM tissue classes and the
corresponding templates, in case of NS images or standard-
ized by the L4 and SBST procedures.

Also the whole brain, obtained by combining the CSF,
WM, and GM images, labeled as BRAIN in the figure, is
shown.

It represents a typical situation, observed on the whole
dataset, i.e., MAE values in SBST outperformed always L4
in a significant manner with respect to each considered tissue,
giving values reduced over 50 %. t Test evaluation of the
statistical significance of MAE differences between L4 and
SBST gave P(T<=t) two tails <10−6.

On the contrary, Robitaille et al. [11] observed a less ho-
mogeneous behavior of STI with respect to L4. In their case,
compared to NS images, both L4 and STI exhibited better
MAE, but STI significantly outperformed L4 for WM, with
no difference for GM.

L4 was superior for foreground (FRG), corresponding to
the set of voxels for which the intensity is higher than or equal
to the mean intensity computed over the whole image and
lower than the intensity corresponding to the percentile value
99.8 obtained for the whole image.

Obviously, the conclusion in [11] that standardization tech-
niques should not be aimed solely at matching histograms and
that spatial information should also be incorporated is valid for
SBST and STI approaches.

Evaluation on Synthetic Images

For this experiment, we used only the Brainweb synthetic
datasets [22], available from the McConnell BIC of the Mon-
treal Neurological Institute, McGill University.

Fig. 4 A brain image, non-standardized (NS), SBST, and L4 intensity
standardized, and their histograms (339 x 388 mm (300 x 300 DPI))

Fig. 5 Box plots (left to right, top to bottom) of CSF, GM, WM, and
BRAINmean absolute errors for 250MR images (a mixture of ADNI and
OASIS images randomly selected), non-standardized (NS), L4 and SBST
standardized
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The simulated datasets had a resolution of 181×217×181
and a slice thickness of 1 mm. The advantage of using the
Brainweb dataset in the comparison was the availability of
ground truth for the tissue classes (CSF, GM, and WM) from
which the digital phantoms were created.

The Brainweb dataset, while consisting of a single digital
phantom, comes with different simulation options pertaining
to the amount of noise and the amount of RF inhomogeneity
in the simulated image. We chose T1-weighted images with a
noise level from 0 to 9 % and no signal intensity
inhomogeneities.

We standardized these images with the same scale obtained
for the other employed images coming from the other public
datasets. Standardization quality assessment was performed
evaluating the Dice overlap measures.

Interestingly enough, the best results (Dice index >0.99)
with both segmentation tools (FSL and SPM-DARTEL) were
obtained when using simulated images with a moderate
amount of Rician noise, as opposed to images without any
noise (Dice index around 0.8). This is also noted by Ferreira
da Silva [23], and bodes well for real datasets since imaging
noise is an inevitable part of image acquisition. The observa-
tion that the CSF tissue class exhibits a greater spread is con-
firmed also for the simulated images, probably for the same
reasons addressed in the previous subsection.

Tissue Divergences

This evaluation was performed on the whole MRI dataset,
including the synthetic Brainweb images, with the aim to re-
produce as much as possible MRIs coming from heteroge-
neous sources, including scanners from different manufac-
turers as well as different scanner models from the same
manufacturer.

The rationale is in considering that MRI intensities of the
different brain tissues follow normal distributions that can be
depicted at least as mixtures of Gaussians, a basis utilized by
the approaches motivated by the Gaussian mixture model
(GMM) based tissue analysis and segmentation procedures
[8 and references therein].

In this way, we should be able to quantify the proximity of
voxel intensities to a Gaussian distribution as a result of the
intensity standardization [8].

Consider what happens if we assume that the data distribu-
tion obtained from the data histogram of each tissue (GM,
WM, CSF) does not differ significantly from the Gaussian
distribution over the tissue mean and variance that is supposed
to generate the samples. If this hypothesis holds, we should
not find any significant advantage toward data modeling as a
result of intensity standardization.

The Jeffreys divergence (JD) is the metric used to evaluate
how much the data distributions differ from the Gaussian
models. JD is a symmetric measure of similarity between

two distributions, giving low values when there is a small
difference between them.

We first compute for the NS MRIs, the mean and
the variance of gray-level values from each tissue, and then,
we generate samples of Gaussian distributions parameterized
by those means and variances.

Next, for each tissue, we generate histograms from the data
over each tissue taking into account 98 data percentiles (upper
and lower 1 percentile data left out as noise and outliers) [8].
This gives an account of the actual model of the data for the
given tissue type, calculated by means of the JD measure.

We are especially interested in showing how much stan-
dardization increases per-tissue similarity to Gaussian distri-
bution, and intertissue discrimination, for L4- and SBST-
standardized MRIs with respect to NS images.

For this purpose, starting from NS images, we obtain the
histograms of the voxel intensities for each tissue and the
corresponding Gaussian models. Then, the JDs are calculated
between each histogram and its corresponding Gaussian mod-
el (i.e., per-tissue) and between histograms corresponding to
couples of different tissues (i.e., intertissue).

Next, we do the same for both the SBST- and L4-
standardized images.

If the intensity standardization improves tissue contrast and
gaussianity, then we should see an increase in the intertissue
and a decrease in the per-tissue divergence measures, on the
standardized images.

Figure 6a shows the per-tissue JD variation distribution
(across images), calculated by subtracting (for each MR im-
age) JD values between the histogram of each tissue and its
Gaussian model, SBST or L4 standardized, with respect to
NS. For each tissue, the statistical significance of the results
is in 95 % interval of confidence.

From the above, if standardization leads to better Gaussian
compliance of the various tissue types, variation values are
expected to be lower than 0, and from Fig. 6, it is evident that
the SBST standardization results in improved tissue type sep-
aration in intensity space.

Figure 6b shows the intertissue JD variation, calculated by
subtracting JD values between two tissues in NS images, from
JD values for the corresponding SBST or L4 standardized
images. Higher values represent better discrimination. Note-
worthy, SBST appears to outperform L4 in discriminating
brain tissues.

Discussion

A questionable point of the paper could regard the assessment
of the robustness of the SBST technique through the Dice
index, as a measure of the overlap between tissue masks seg-
mented before and after standardization.
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This could be considered an apparently circular argument,
in a sense that segmentation is used to define tissue classes;
then, intensities are standardized, and subsequent segmenta-
tion is applied again to show that segmentation remains large-
ly unchanged. As such, it could be considered that the result of
a high Dice index between segmentation before and after
SBST is not surprising and does not demonstrate the advan-
tage of the method.

To overcome such a potential limitation, we quantitatively
investigated how representative the voxel intensities from var-
ious tissue types are of a Gaussian model built around a
Gaussian distribution centered at the considered tissue mean
and with equal variance.

As shown in the BTissue Divergences^ section, SBST stan-
dardization results in improved tissue type separation in inten-
sity space and better discrimination of tissue types.

As regards the effect of the SBST intensity standardization
on tasks that foresee for example the unsupervised learning of
the tissue classes/clusters in different MRIs, Cataldo et al. [12]
demonstrated, especially in Fig. 5 of the reference, that auto-
mated classifiers may work more reliably on the SBST-
standardized images than in NS ones.

Furthermore, in that procedure for generating set of templates
for the hippocampal region, it was assessed that the Bminimum^
number of templates is largely independent on the clusterization
method and on the number of the MR images [12].

So that, the best strategy to be used when nonhomogeneous
populations are considered, strictly depends on the features
and characteristics we want to emphasize better [12].

This means that information about tissue classes/clusters
are very robust with regard to the signal intensity changes
made by the SBST technique.

A limitation of the technique regards the fact that it is reli-
ant onWM/GM segmentation and therefore cannot be applied
to pathologies that take up significant part of the brain, e.g.,
glioblastoma, or partial field of view acquisitions (such as for
example in physiological sequences), or when other physio-
logical conditions, such as administered contrast agent, may
prevent segmentation and therefore the technique from being
effective.

Finally, it is to be considered that segmentation of the MR
images is performed after whole head, fat, bone, and back-
ground are removed. This fact implies that the technique can-
not be applied in cases when adipose or osseous tissues may
be important.

Apart from these considerations about the technique limits,
it is to be mentioned that SBST standardization could be ap-
plied across image sets acquired with different modalities,
e.g., similarly to what is described in Shah et al. [8] in which
T1- and T2-weighted or proton density images are L4
standardized.

Conclusions

The paper details a standardization technique for brain MR
images, called SBST, able to obtain similar gray values for
comparable tissue classes, so that automatic segmentation of
images before and after standardization gives high overlap for
each tissue class.

By using both histogram and tissue-specific intensity infor-
mation, piecewise-linear intensity transformations between
GM, WM, and CSF images are separately calculated; then, a
single smoothed transformation is applied to the images. The
technique was evaluated on large, public datasets of MR brain
images belonging to older adults, characterized by clinical
conditions ranging from good health state to probable demen-
tia of AD type as well as with MIC. We evaluated the tech-
nique also on synthetic MR images with different amounts of
noise.

First of all, the technique proved to be effective in reducing
the possibility of tissue Bmixing^.

Then, the robustness of this technique was assessed in two
ways: (a) the nonstandardized and standardized images were
segmented into WM, GM, and CSF, and segmentation masks
were compared by the Dice index, with the aim of checking if
the information contained in the images was somewhat
corrupted by the procedure, and (b) MAE was calculated be-
tween a (single) standardization template and each standard-
ized image (after coregistration).

Fig. 6 Variation in per-tissue
Jeffreys divergences, between the
same tissue, SBST and L4
standardized, with respect to the
NS corresponding one (a).
Variation in intertissue Jeffreys
divergences (b)
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As to test (a), the results showed that the Dice index be-
tween standardized and nonstandardized images was very
high (over 0.9) for each tissue class and independently on
the clinical conditions. It is important to highlight that the
number of images for the training set has to describe the pop-
ulation as possible, and it is lower for patients with homoge-
neous clinical conditions than with mixed degrees of neuro-
pathology. As to test (b), MAE was smaller for SBST than for
two other standardization techniques, L4 and STI.

Furthermore, we assessed how much standardization in-
creases intertissue discrimination, considering NS versus L4-
standardized and versus SBST-standardizedMRIs, respective-
ly, by using the variation in JD, before and after standardiza-
tion. The efficacy of the SBST technique was finally tested by
assessing gaussianity of gray-level distributions of each tissue
before and after standardization. In all the cases, SBST per-
formed better.

In conclusion, the technique shows very promising results
even compared with other approaches available in the litera-
ture or over calibration techniques, since it does not require a
reference material of known MRI property for calibration and
does not require explicit manual sampling of different tissue
regions. Intensity standardization results in a usable modified
image in which all tissues have standardized intensities, up to
the accuracy of the technique.

The technique could be applied to other MRI protocol, such
as T2-weighted or proton density images and can be used to
correct for intrapatient/interpatient, intrascanner/interscanner,
and intrasite/intersite MR image intensity variations.
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